Quasiconvex functions and Hessian equations
نویسندگان
چکیده
In this note we construct new examples of quasiconvex functions defined on the set Sn×n of symmetric matrices. They are built on the k-th elementary symmetric function of the eigenvalues, k = 1, 2, ..., n. The idea is motivated by Šverák’s paper [S]. The proof of our result relies on the theory of the so-called k-Hessian equations, which have been intensively studied recently, see [CNS], [T], [TW1], [TW2].
منابع مشابه
Hermite-Hadamard inequality for geometrically quasiconvex functions on co-ordinates
In this paper we introduce the concept of geometrically quasiconvex functions on the co-ordinates and establish some Hermite-Hadamard type integral inequalities for functions defined on rectangles in the plane. Some inequalities for product of two geometrically quasiconvex functions on the co-ordinates are considered.
متن کاملExtremal properties of generalized convex vector-valued functions
It is known that any local maximizer of an explicitly quasiconvex realvalued function is actually a global minimizer, whenever it belongs to the intrinsic core of the function’s domain. We show that a similar property holds for componentwise explicitly quasiconvex vector-valued functions, with respect to the optimality concepts of ideal, strong and weak efficiency. These new results are applied...
متن کاملHessian Equations with Elementary Symmetric Functions
We consider the Dirichlet problem for two types of degenerate elliptic Hessian equations . New results about solvability of the equations in the C space are provided.
متن کاملWide Stencil Finite Difference Schemes for the Elliptic Monge-ampère Equation and Functions of the Eigenvalues of the Hessian
Certain fully nonlinear elliptic Partial Differential Equations can be written as functions of the eigenvalues of the Hessian. These include: the Monge-Ampère equation, Pucci’s Maximal and Minimal equations, and the equation for the convex envelope. In this article we build convergent monotone finite difference schemes for the aforementioned equations. Numerical results are presented.
متن کاملOn the Extensions of Frank - Wolfe Theorem
In this paper we consider optimization problems de ned by a quadratic objective function and a nite number of quadratic inequality constraints. Given that the objective function is bounded over the feasible set, we present a comprehensive study of the conditions under which the optimal solution set is nonempty, thus extending the so-called Frank-Wolfe theorem. In particular, we rst prove a gene...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006